
~nt~FILLE OP

RADC-TR40-103
Final Technical Report

AD-A212 587

VHLL SYSTEM PROTOTYPING TOOL

International Software Systems, Inc.

Don Hartman, Mike Konrad, Terry Welch

DTIC
E,:LECTE
SEP 191989

APPROVED FOR PUBLIC RELEASE; DISRIBUTION UNLIMITED.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Grffbs Air Force Base, NY 13441-5700

S89 9 18 003

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBN 0704-01 8
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NIA RADC-TR-89-103
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
International Software (f appikable)
Systems, Inc. I N/A Rome Air Development Center (COEE)
. ADDRESS (C0ty, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

9490 Research Blvd, Suite 200
Austin TX 78759 Griffiss AFB NY 13441-5700
8.. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION (W appliable)

Rome Air Development Center COEE F30602-85-C-0129
8I ADDRESS eat, Staft, and ZACodP) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO jACCESSON NO.

Griffiss AFB NY 13441-5700 62702F 5581 22 17
11. TITLE (kwhAe Securt Cla~flcation)

VHLL SYSTEM PROTOTYPING TOOL

12. PERSONAL AUTHOR(S)
Don Hart-an, Mike Konrad, Terry Welch
I1. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yea, Month, Day) 15. PAGE COUNT
Final FROM Jun 85 TO Se 8 8 August 1989 64
16. SUPPLEMENTARY NOTATION

N/A
17. COSATI CODES 18. SUBJECT TERMS (Coninu, on revwn ff nocenasy and denth by block number)

FIELD GROUP SUB-GROUP

12 05 Functional Specifications, Executable Specifications,
Reusability, Requirements Analysis

19. ABSTRACT (Continue on reerse if ncessary and identfy by block number)
This report contains the results of studying issues relating to the requirements development
process. The goals, objectives, results and conclusions for three separate but related com-
ponents, 1) a Requirements Engineering Panel study, 2) the development of a Very High Level
Language Prototyping Tool, and 3) a Database Management Studyl are described.

First, a panel of experts was formed whose goals were to understand the requirements engi-
neering problem and define a long-range (10 year) Research and Development plan for the RADC
Requirements Engineering Testhed (RET). The plan was to identify tools and methods that
should be developed, evaluated and integrated.

Second, the objective of the rapid prototyping system, "Proto", was to develop a functional
prc*otyping capability, in which a systems analyst could define and validate a functional
specification, prior to extensive design and coding effort in a large (C31)-4see reverse)

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
2UNCLASSIFIED/UNLIMITED 0 SAME AS RPT l DTIC USERS UNCLASSIFIED

Z2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
William E. Rzepka (315) 330-2762 . RADC (COEE)

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED

Block 19 - (continued)

- software system. The approach includes defining a functional specification language

for defining prototypes, developing and organizing a facility around the concept of

reusability with the reusable components Cboth functions and data types) managed by

an object manager, and develop a set of support tools to facilitate the construction

and execution of prototypes.

Finally, a study was performed to identify the data base management requirements for

supporting an automated requirements engineering process.- That is, specify a DRMS

that will serve as an RET integration vehicle for selected tools permitting an analyst

to share requirements data between tools. The approach includes identifying database

issues in software requirements development, prototyping a DBMS, and specifying the

kind of DBMS aeeded to tightly couple requirements tools in the RET.

/

~?$7' S#i~ For

NISCRAMI
UTI C TAB

Uianrio. r d

IJusfiih¢jlla :

By
Distribujtioo "

Avd,.ibI1ty Codes

I Avj,; 3.1 / or
D is t

A-V ____

UNCLASSIFIED

Table of Contents

Executive Summary .. 1

1. In tro d uctio n .. 4

1.1 Requirements Terminology .. 4
1.2 The Requirements Challenge ... 4
1.3 The Contract .. 5
1.4 Terms and Abbreviations .. 6

2.0 Objectives .. 6

2.1 RADC Objectives - The Requirements Engineering Testbed (RET). 6
2.2 Contract Obiectives 7

2.2.1 Panel Objectives ... 7
2.2.2 Proto Objectives ... 7
2.2.3 DBMS Objectives ... 8

3.0 Approach ... 8

3.1 The Requirements R & D Plan Effort 8
3.2 The VHLL System Prototyping Tools Effort 9
3.3 Database Management System ... 10

4 .0 R esults .. 11

4.1 The Requirements R&D Plan Effort 11
4.1.1 Panel Recommendations .. 11
4.1.2 Specific Goals for 1990 and 1995 11

4.2 The Prototyping Effort .. 13
4.2.1 Functional Specification Language 13
4.2.2 Reusability ... 14
4.2.3 Support Tools ... 14

4.3 The Database Management System Effort 15

5.0 Conclusions 16

5.1 Conclusions of Panel .. 16
5.2 Conclusions from Proto Development 16
5.3 Database Manager for RET ... 20

B ib lio grap hy ... 20

Appendix A. The Requirements R&D Plan Effort 21

Appendix B. Executive Summary from Database Study 30

Appendix C. Proto Capabilities and Concepts .. 31

-1-

EXECUTIVE SUMMARY

The overall goal of this contract was to analyze the requirements development process
then define new methods and develop prototypes of tools to improve this process.

The contract included three separate but related components: 1) a Requirements
Engineering Panel study; 2) the development of a Very High Level Language Proto-
typing Tool; and 3) a Database Management Study". This report describes the goals,
objectives, results and conclusions reached for each of these three components.

Requirements Engineering Panel

A panel of experts was formed whose goals were to understand the requirements
engineering problem and define a long-range (10 year) Research and Development plan
for the RADC Requirements Engineering Testbed (RET). The plan was to identify
tools and methods that should be developed, evaluated, and integrated.

The panel met several times and produced a technical report entitled "RADC Require-
ments Engineering Testbed Research and Development Program Panel Recommenda-
tions" [2]. The Panel recommended that RADC pursue a research and development
program for the RET consisting of two tracks:

Evolutionary Track
This track proposed an evolutionary R&D effort to extend the current formalisms
and tools. Initial efforts are toward the development of tools for prototyping inter-
faces and functionality, and in deriving performance estimates based on estimated
or simulated work loads. Future efforts would develop tools and methods that aid
in: (1) scenario development, analysis, and execution; (2) cost, risk, and perfor-
mance analysis; (3) the acquisition, modeling, and usage of domain information;
and (4) requirements analysis methodology.

Formal Language Track
This track proposed that research effort be spent toward developing a single for-
mal language for expression of goals, requirements, and solution architectures.
With this language, users could automatically generate prototypes from a formal
specification.

The panel further recommended a testbed integration plan for 1990, that would lead to
a uniform user interface to all tools and a common repository for all requirements,
designs, and tool data, and which incorporates RADC's currently-contracted require-
ments tools.

Very High Level Language Prototyping Tool

A rapid prototyping system called "Proto" was developed to support prototyping of
C31 applications.

The objective of the Proto effort was to develop a functional prototyping capability, in
which a systems analyst could define and validate a functional specification, prior to
extensive design and coding effort in a large software system.

-2-

The approach taken in attempting to realize this objective included:

a) Define a functional specification language for defining prototypes.

b) Organize the facility around the concept of reusability with the reusable com-
ponents (both functions and data types) managed by an object manager.

c) Develop a set of support tools to facilitate the construction and execution of pro-
totypes.

The functional specification language was developed and used to construct several pro-
totype examples. The language has a graphical data flow-like syntax with hierarchical
decomposition capabilities. Experience indicates that this type of language is a good
approach for a functional specification language. It is natural to use and provides a
good communications medium between analysts and users of target systems. Addi-
tionally, it properly focuses the analyst on abstract datatypes and functions early in the
specification process, and discourages users from jumping into design level issues early
in the process. The ability to execute the specification to determine how well the pro-
totype meets the functional requirements is highly desirable.
The Proto language has precise semantics and a very simple syntax. This has proven
to have both advantages and disadvantages. On the plus side, users can learn to use
the language quickly and do not have to worry about the execution order of the com-
ponents in a diagram - namely, the scheduling is completely automatic. On the nega-
tive side, the fact that Proto does not allow the user to directly control scheduling
results in situations when the Interpreter does not execute complex diagrams in the
order that the user might consider intuitive.

The Proto system centers around the concept of building prototypes from reusable
components. As part of the work, a small library of reusable components was con-
structed and used to build up several sample prototype systems. The library com-
ponents are both domain dependent (e.g., algorithms associated with C31), and domain
independent (e.g., user interface prototyping tools). Our preliminary conclusions
drawn from these examples are that 1) a user can build a prototype quickly if the reus-
able library contains most of the functions required for that particular example, and 2)
a lot more work on reusability must be done before a analyst who is not an expert in
using Proto will be able to quickly put together a prototype.

The support environment that was developed is highly graphical and includes an
object-oriented interface supported by an object manager. With this interface, the user
points at the object of interest and sees a menu of options that are meaningful to the
selected object in the current context (e.g., Editor versus Interpreter).
The Proto support tools that were developed included: 1) a diagram Editor through
which users can construct executable functional specifications; 2) an Interpreter that
provides for direct execution of Proto diagrams (graphs); and 3) a Browser which
allows a user to navigate through the database of objects.
The Editor tool understands the syntax of a diagram and supports the user by not
allowing meaningless diagrams to be created. The Editor provides a number of
advanced editing features to simplify the task of the user. As might be expected
experience has shown that the Editor could be improved. Some of the more desirable

-3-

features not yet implemented include a flexible cut-and-paste facility, the ability to
split and merge multi-level graphs, and user definable icons.
The Proto Interpreter has worked quite nicely for the examples built to date. It pro-
vides the ability to watch the functional prototype run (e.g., the bubble(s) currently
executing are highlighted), the ability to set graphical breakpoints, and the ability to
instrument diagrams (i.e., display the values of selected data items along the arcs over
which the data flows). Its current limitations include the fact that it is single threaded
and has a fixed scheduling algorithm.
The existing implementation of the Proto Browser provides very basic capabilities for
viewing and and modifying objects in the reusable library. While the current capabil-
ity is adequate for the prototype, a more integrated graphical browser should be
developed.

Database Management Study

A study was per ;1rmed to identify the database management requirements for support-
ing an automated requirements engineering process.
The objective of the DBMS effort was to specify a DBMS that will serve as an RET
integration vehicle for selected tools, in particular the tools that constitute the initial
RET requirement capability, permitting an analyst to share requirements data between
tools.

The approach taken in the DBMS effort was to:
(1) identify database issues in software requirements development, characterizing

requirements data and data access patterns (usage of requirements data),
(2) from the analysis in (1), prototype a DBMS that would serve as the Proto data-

base, coupling the Proto tools, permitting a sharing of requirements data across
Proto tools, and

(3) on the basis of experience gained from the Proto DBMS effort, specify the kind of
DBMS needed to tightly couple requirements tools in the RET.

Based on the Database Management study and the results of the Proto development
effort, our conclusion is that an Object Manager should be used to manage all require-
ments engineering information in the RET. This model will provide a natural way to
define the artifacts for representing the information required by the requirements
engineering process and will provide the optimal way for managing the complex rela-
tionships among these artifacts. Other models (e.g., the relational, hierarchical or net-
work models) could be used but they would suffer both in terms of performance and
ease of use as compared to the object model.

-4-

SECTION 1. INTRODUCTION

The overall goal of this contract was to analyze the requirements development process
then define new methods and develop prototypes of tools to improve this process.

1.1 Requirements Terminology

Requirements are precise statements of need which characterize a needed system in
terms of its external characteristics (especially interfaces and functionality visible to
the user) and constraints (e.g., on execution performance and reliability, and on
development cost and time).

Requirements engineering is the systematic application of tools and techniques to guide
and control the emergence of the requirements product. It is an iterative process of
analysis, specification, evaluation, and refinement. Its inputs are mission-related ideas
and problems expressed by mission specialists and their representatives. Its output is
the requirements specification.

1.2 The Requirements Challenge

The current state of the requirements process is that it is almost entirely a manual pro-
cess whose success depends on the insight of the analyst doing the work. There are
no generally accepted methodologies, criteria for quality, or notations.

Typically requirements are almost entirely English text, so they are subject to differing
interpretations by the customer (end-user) and by developers, namely the two audi-
ences that the requirements statements should bring together.

Existing requirements techniques, such as SREM and PSL/PSA, provide a discipline
for defining requirements and analyzing them, but are best at addressing late "require-
ments phase" concerns. They require a largely manual execution of the requirements
process. It is not yet evident that the labor involved in their use is justified by the
improved results obtained.

Opportunities for improving the requirements development process include:
(1) formal descriptions - improve precision in requirements statements, reduce ambi-

guity, and provide greater opportunity for machine-assisted analysis;
(2) domain information - capture and interpretation of context information will lead to

improved requirements mechanization and interpretation;
(3) prototypes - end-users are better able to analyze their needs when they see opera-

tional results;

-5-

(4) scenarios - end-user needs are often expressed and analyzed in terms of scenarios;
and

(5) cost and risk estimation - identifying and quantifying costs and risks in system
development and operation is the basis for making informed trade-offs against sys-
tem functionality, usability, and performance.

Each of these areas is presently very labor intensive and/or lacks a formal basis.

1.3 The Contract

The contract included three separate but related components:

Requirements Engineering Panel
A panel of experts was formed whose goals were to understand requirements
engineering problems and develop a process model.

The panel met several times and produced a technical report entitled "RADC
Requirements Engineering Testbed Research and Development Program Panel
Recommendations" [2]. This report includes a plan for the development of a
Requirements Engineering Testbed of tools and methodologies for defining
requirements.

Very High Level Language Prototyping Tools
A rapid prototyping tool called "Proto" was developed to support prototyping of
C3I applications.

This tool allows users to quickly create an executable prototype of C31 systems
using a dataflow-like graphical language. The "VHLL System Prototyping Tool
Users Manual" [4] describes this tool.

Database Management Study
A study was performed to identify the database management requirements for sup-
porting an automated requirements engineering process.

The result of this study is a report entitled "A Data Maiagenent Facility for
Requirements Engineering Testbed (RET)" [8].

The following report describes the objectives, approach, and results for each of the
three components of the contract. It also identifies key conclusions reached as a result
of the work.

-6-

1.4 Terms and Abbreviations

ADI Atmospheric Defense Initiative

ASE Advanced Sensor Exploitation

DBMS Data Base Management System
C31 Command, Control, Communications and Intelligence

OM Object Manager
Proto ISSI's rapid prototyping tool

PSLIPSA Problem Statement Language / Problem Statement Analyzer - a require-
merits tool

RADC Rome Air Development Center

R&D Research and Development

RET Requirements Engineering Testbed
RPS Rapid Prototyping System - developed by Martin Marietta
SREM Software Requirements Engineering Methodology

VHLL Very High Level Language

SECTION 2. OBJECTIVES

RADC has a long-term goal of developing and evaluating new tools and methods that
will enable Air Force systems analysts to address their requirements engineering prob-
lems. This contract's objectives address different aspects of this RADC goal, and thus
it is appropriate to discuss what RADC proposes to do toward this goal before charac-
terizing the contract objectives.

2.1 RADC Objectives - the Requirements Engineering Testbed (RET)

New requirements tools and methods (perhaps addressing one or more of the opportun-
ities identified in Section 1.2) need to be evaluated on realistic problems in an environ-
ment that supports their use by Air Force systems analysts. Therefore, RADC pro-
poses the creation of a facility which promotes experimentation, cailed the Require-
ments engineering Testbed (RET), and which hosts the new methods and tools. Air
Force systems analysts will use the RET to define, analyze, and exercise requirements
of planned operational systems. This will have two benefits: (1) new tools and
methods will have early exposure on realistic problems, encouraging their use by the
Air Force and industry and (2) evaluation of the new tools and methods in terms of
requirements quality and productivity will provide insight for the next generation of
tools.

In the near term, the RET will host three tools recently developed through RADC con-
tracts. These tools will constitute'the initial RET requirements capability:

-7-

(1) the Analyst developed by Systems Designers under subcontract to Imperial Col-
lege, assists in organizing the requirements and context information by end-user
role, aids in the documentation of major usage scenarios and performance and reli-
ability smr;ss points, and provides a capability to symbolically animate the require-
mellt'.;

(2) the VHLL System Prototyping Tool, or Proto, - developed by International
Software Systems, permits rapid definition of functional prototypes via a VHLL
that is used to specify the functionality of the target system; the resulting descrip-
tion is executable and can be exercised by end-users, giving the opportunity to
explore their needs in actual usage; and

(3) the Rapid Prototyping System (RPS), developed by Martin Marietta, permits
rapid definition of graphic and dynamic user displays that can be driven, say, by a
battle scenario; and provides the capability to define and analyze the results of
several performance simulations: of an end-user workstation, of the system as a
whole, and of processor and communication network resources.

RADC's objectives for the RET are further elaborated in [2]. The tools that con-
stitute the initial RET requirements capability are additionally characterized in [3],
[4], and [5].

2.2 Contract Objectives

With the RET described, we can now describe the objectives of each of the three parts
of the contract.

2.2.1 Panel Objectives

The objective of the Panel of experts was to define a long-range (10 year) Research
and Development (R&D) plan for the RET. This plan was to identify tools and
methods that should be developed, evaluated, and integrated. The Panel was to be a
broad-based effort with inputs from both academia and industry.

2.2.2 Proto Objectives

The objective of the Proto effort was to develop a functional prototyping capability, in
which a systems analyst could define and validate a functional specification, prior to
extensive design and coding effort in a large software system.

The principal benefit in a validated functional specification is the elimination of a
major source of costly errors: poorly-understood end-user needs. If the functional
specification correctly specifies end-user functionality, and if the developers can
correctly develop a system to satisfy that specification, then there is a much greater
chance that the resulting system will in fact behave as desired.

-8-

In order for this benefit to be realized a functional specification should be:

1) precis- - so that end-users and software developers have a common understanding
of the functionality to be delivered (i.e., what responses the system should provide
to what inputs),

2) validatable - so that it can be determined whether the functions defined within the
specification are in fact the "correct" functions an end-user needs in the target con-
text, and

3) specifiable with modest effort - so that there are sufficient project resources and
time to pursue system d"sign and development.

2.2.3 DBMS Objectives

The objective of the DBMS effort was to specify a DBMS that will serve as an RET
integration , .hicle for selected tools, in particular the tools that constitute the initial
RET requirement capability, permitting an analyst to share requirements data between
tools.

SECTION 3. APPROACH

In this section, we explain the approaches taken toward satisfying the three contract
objectives described in Section 2.2.

3.1 The Requirements R&D Plan Effort

As indicated earlier, a panel from academia and industry was f,_rmed to define a long-
term R&D plan for introducing new methods and tools into the RET and for aiding in
their evaluation. The panel was appointed and convened several times during mid-
1985 to early 1986.

The panel's approach at defining the R&D plan consisted of:

(1) characterizing requirerruiats issues from perspectives of mission specialists (end-
users), acquisition engineers, and system developers - to more fully understand the
requirements problem;

(2) defining a requirements engineering process model as a means of capturing the
panel's understanding of the requirements engineering process, and as a basis for

-9-

systematic analysis of requirements issues and technology options;
(3) creating two scenarios illustrating the process model in terms of RET capabilities,

one for 1990 and the other for 1995; and
(4) defining an RET R&D program as the strategy to provide the tools and methods

that would work together in the ways envisioned in the process model and in the
1990 and 1995 scenarios.

The result of the panel's efforts is described in a report [2]. A summary of the panel's
findings is presented in Section 4.1.

3.2 The VHLL System Prototyping Tools Effort

The objective of the Proto effort was to develop a functional prototyping capability.
Some of the key ideas behind the approach taken in the design include:
1) The prototyping facility should provide a precise and simple modeling capability

(language) so that users and developers will have a common understanding of tie
functionality provided by a model.

2) The facility should make it simple for developers to define the solution architec-
ture (specification) and to determine that the architecture meets the system require-
ments.

3) Prototypes developed on the facility should be executable with the goals of a)
assisting users to understand the capabilities and limitations of the target system;
and b) assisting users in validating the system requirements.

4) Developing a prototype using the facility must take no more than a small fraction
of the time required to develop the target system using conventional development
technology.

5) The facility should be useful for developing scenarios of usage and test patterns
that can later be used for testing the target system.

6) The facility should provide prototype user interfaces that allow users to evaluate
the target system's usability.

7) The facility should be helpful in checking the interoperability of subsystems via
the interoperation of prototypes.

The approach taken in attempting to realize these objectives included:
a) Define a functional specification language for defining prototypes. This language

includes a data flow-like syntax and "programs" can be hierarchically decomposed
to any desired level. The language was intended to be easy to use by non-
programmers and the resulting programs to be directly executable by an Inter-

- 10-

preter.

b) Organize the facility around the concept of reusability with the reusable com-
ponents (both functions and data types) managed by an object manager. The
reusable components were to be maintained in a library, and flexible tools were to
be designed to allow users to browse the library, and build new specifications by
extracting components from the library and inserting them into diagrams.

c) Develop a set of support tools to facilitate the construction and execution of pro-
totypes. These tools were to include an Editor for building and modifying
diagrams, an Interpreter for executing the diagrams, and a browser for locating
desired components from the reusable library.

Some key concepts in the approach taken in implementing Proto include:
* a close coupling between the Proto human interface and the Proto database so that

what the systems analyst sees on the display is what is in the database, and so that
tools can share the objects and screen images with consistent interpretations;

* support for managing the layout of multiple data flow graphs including moving,
shrinking, and scaling them - enabling the systems analyst to extract the view
he/she wants of a particular multi-level hierarchical dataflow description; and

* support an object-oriented style of interaction, whereby each icon on the Proto
display corresponds to a Proto database object whose class defines the type cf
editing/interpretation operations available for that object and thereby defines the
content of the "pop-up" menu which guides user actions for that object.

3.3 Database Management System

The approach taken in the DBMS effort was to:

(1) identify database issues in software requirements development, characterizing
requirements data and data access patterns (usage of requirements data),

(2) from the analysis in (1), prototype a DBMS that would serve as the Proto data-
base, coupling the Proto tools, permitting a sharing of requirements data across
Proto tools, and

(3) on the basis of experience gained from the Proto DBMS effort, specify the kind of
DBMS needed to tightly couple requirements tools in the RET.

SECTION 4. RESULTS

4.1 The Requirements R&D Plan Effort

In this section we summarize the panel's recommendations and provide an overview of
the long-term R&D program the panel defined to introduce new methods and tools into
the RET and to aid in their evaluation. Appendix A provides more detail on the R&D
program. Appendix A also lists the panel members and describes the requirements
engineering process model the panel defined as part of its activities. Detailed results
of the panel are described in [2].

4.1.1 Panel Recommendations

The Panel recommends that RADC pursue a research and development program for the
Requirements Engineering Testbed (RET) consisting of two tracks:

(1) an Evolutionary Track for developing tools and methods such as rapid prototyping
that in the near term give the best payoff in better requirements, and

(2) a Formal Language Track for exploring the higher risk/payoff implications of a
formal requirements language. The risk in the Formal Language Track is that one
must be able to express requirements formally. The payoff is in the formal activi-
ties that can be automated. Determining requirements satisfaction and generation
of scenarios are examples.

The panel further recommended a testbed integration plan for 1990, that would lead to
a uniform user interface to all tools and a common repository for all requirements,
designs, and tool data, and which incorporates RADC's currently-contracted require-
ments tools. This recommendation is based on a short-term goal of a loose coupling
of the tools.

4.1.2 Specific goals for 1990 and 1995

The R&D program consists of R&D thrusts in these areas: (1) prototyping, (2) require-
ments analysis, (3) tool integration and evaluation, and (4) a formal language for
requirements and specifications. The objective of the Evolutionary Track is to provide
better capabilities and more automation in the first two areas and to accomplish and
support the third area. The focus of the Formal Language Track is the last area.
Below, we summarize each area, identifying capabilities to be developed by 1990 and
1995, and the benefits.

- 12-

Prototyping

In prototyping, the 1990 goal is to develop capabilities in: (1) prototyping system
interfaces and functions, (2) developing scenarios to drive the prototypes in experi-
ments, and (3) collecting and analyzing results. The 1995 goal is to extend capabil-
ities for analyzing prototyping results.

Benefits: End users are generally able to analyze their mission concerns better in
operational settings than by reading lengthy, textual requirements specifications.
Thus prototyping will play an important role in discovering and understanding criti-
cal needs, and therefore in capturing these needs in the requirements. Prototyping
will also provide a feasibility check, and when later supplemented with performance
analysis, will serve as a basis for sensitivity analysis on requirements.

Requirements Analysis

The 1990-1995 goal for requirements analysis are to learn how to represent require-
ments more precisely, to strongly couple the analysis to requirements updates, and
to identify relevant metrics. Another goal is to provide a methodology to guide the
user in the use of these analysis capabilities.

Benefits: Requirements correctness and quality will improve. Air Force users will
use the analysis tools to investigate their concerns in the requirements including the
rationale and implications of decisions that were made.

Tool Integration and Evaluation

In the integration and evaluation of tools, the 1990 goal is to provide state-of-the-art
database and human interface capabilities as a basis for an integrated testbed of
tools and for monitoring tool performance. The 1995 goal is to integrate new pro-
totyping, requirements analysis, and formal language capabilities into the instru-
mented RET to facilitate their evaluation.

Benefits: A common database implies tools will be able to share data. A common
user interface implies user learning time will be reduced. Both imply the user will
be able to move easily from one tool to another. Development efforts will be
ieduced - new tools can use the same data management facilities and utilize the
same human interface mechanisms for user communication. An instrumented and
integrated testbed is a basis for evaluating relative tool effectiveness.

- 13 -

Formal Language

In the formal language area, the 1990 goal is to provide: (1) a common formal
language for requirements and specifications and (2) tools that automatically com-
pare requirements and specifications statements. The 1995 goal is to provide: (1)
the capability to generate and interpret scenarios, and (2) extensions to the language
that facilitate incremental modifications and multiple levels of abstraction.

Benefits: Requirements statements will be precise and machine interpretable, lead-
ing to increased automation and support for prototyping, requirements analysis, and
development activities.

4.2 The Prototyping Effort

The Proto system was implemented and delivered to RADC. As part of the evalua-
tion, several demonstration prototypes were constructed including:
Advanced Sensor Exploitation (ASE)

This demonstration is of the Target Report Correlation component of the ASE
problem.

Atmospheric Defense Initiative (ADD
This demonstration was designed to work in conjunction with the RPS com-
ponent of the RET. In particular, the Proto demo allows the user to control the
movement of aircraft on the situation display provided by RPS. This demonstra-
tion was constructed, but has not yet been interfaced to RPS.

Library
This example manages the handling of books in a library. It handles check out
and returns of books, adding and deleting books to the library, card catalog
searches, etc. This example has been used for training analysts who plan to
develop prototypes using Proto. It is documented in the Proto User's Manual
[5].

The following subsections outline some of the key features of the Proto system.
Appendix C gives a more pictorial view of the system and its features. The "screen
dumps" in that appendix are taken from the ASE example.

4.2.1 Functional Specification Language

A functional specification language was implemented which:
* has graphical data flow-like syntax - a notation familiar to most systems analysts
* permits hierarchical decomposition - a means of employing abstraction in complex

functional descriptions, and
* eliminates low-level design decisions - to improve productivity

- 14-

The language has proven adequate for the functional prototype examples we have con-
structed. However, as discussed in Section 5, the language needs to be enhanced to be
truly useful for prototyping complex real-time systems.

4.2.2 Reusability

The Proto system was built around the concept of reuse. In particular, the system:
* Includes a "Reuse library" which is maintained by an Object Manager. The

library contains components that are used as building blocks for prototypes.
* Includes keywords as attributes of reusable components. Searches of the reusable

library can be made based on these keywords.
* Includes facilities by which reusable components can be located based on defined

relationships (e.g., all the functions that make use of a particular data type). This
helps a user determine how a component is used in other contexts.

* Includes in the library both application-independent elements (e.g. parameterizable
data management functions and forms interface functions), and application-
specific elements (e.g., C31 functions). This is intended to improve productivity
through reuse and to reduce the required level of computing skill required to pro-
duce a functional prototype.

The reusable library that has been constructed has proven quite adequate for the exam-
ples we have constructed with Proto. There is however still much work to do espe-
cially in the area of clarification and categorization of components, graphical browsing
of the component library and editing components into existing graphs.

4.2.3 Support Tools

The three principal support tools provided by Proto are the "Diagram Editor, the Inter-
preter and the Browser.

Diagram Editor

A diagram Editor was developed through which users can construct executable
functional specifications. The Editor understands the syntax of the diagrams and
supports the user through a variety of consistency and completeness checks.
Objects in the diagrams can have multiple alternative representations. These
representations include:

dataflow - an object in a diagram can decompose into another diagram.
text - an object can be represented by a textual description (this aids in

understanding a diagram, but is not directly executable).
code - an object can have associated source and object code. The object code

is executable.

script - a high-level language that is directly interpretable.

- 15 -

Interpreter

A Proto Interpreter was developed that allows direct execution of Proto diagrams
(graphs). In doing this, the Interpreter analyzes the graph to be executed and
schedules component functions in the graph for execution. As the functions are
executed, the Interpreter collects outputs from them and passes them along to
downstream functions; and updates the schedule defining the order of execution.
The Interpreter provides debugging aids (e.g., setting of breakpoints and single
step operation) and capabilities for instrumenting (animating) the diagrams. Dur-
ing execution, the user can observe the sequence of execution of components of a
diagram; additionally, through the instrumentation capabilities, the user can con-
tinuously view the values of selected data items.

Browser

A Browser was developed which allows a user to navigate through the database of
objects. Objects and their attributes can be viewed and modified through this
interface.

4.3 The Database Management System Effort

An analysis was performed to identify database issues that affect the requirements
development process and based upon this analysis an approach to providing data
management support for the RET was proposed. The proposal is to use an Object
Manager (OM) to support all the RET tools. A discussion of the analysis and the
resulting proposal are included in [8]. The executive summary for this report is con-
tained in Appendix B.

The basic conclusion of this work is that requirements engineering information must be
shared amongst multiple tools and the this can be done best by a model that treats the
information as a collection of objects each of which contain explicit data structures and
relationships to other objects. Furthermore, while this model can be supported by a
relational or network database, an object-oriented database is preferred both because it
will provide the most natural way to work with objects, and due to the complex rela-
tionships among requirements objects, it has potential for much better performance
than other data management models.

The Proto system was implemented using an OM. One reason for using this approach
was to help us evaluate the applicability of object-oriented technology to the require-
ments engineering problem. The results of the Proto experience reinforce the appraisal
of the OM advantages. Several tools within the Proto system effectively shared data
and object-oriented data displays to provide very smooth user transitions from tool to
tool. It is clear that no other DBMS data model would have been as effective in con-
veniently storing the multiple degrees of composition and abstraction used in Proto.

- 16-

SECTION 5. CONCLUSIONS

5.1 Conclusions of Panel

The conclusion of the Panel was that RADC pursue a Requirements Engineering
Testbed (RET) program consisting of an Evolutionary Track and a Formal Language
Track.

The "Evolutionary Track" proposes an evolutionary R&D effort to extend the current
formalisms and tools. Initial efforts are toward the development of tools for prototyp-
ing interfaces and functionality, and in deriving performance estimates based on
estimated or simulated work loads. Future efforts would develop tools and methods
that aid in: (1) scenario development, analysis, and execution; (2) cost, risk, and per-
formance analysis; (3) the acquisition, modeling, and usage of domain information; and
(4) requirements analysis methodology.

The Formal Language Track proposes research effort be spent toward developing a
single formal language for expression of goals, requirements, and solution architec-
tures. With this language, users could automatically generate prototypes from a formal
specification.

5.2 Conclusions from Proto Development

The initial implementation of Proto was a prototype intended to determine:

a) the effectiveness of a very high level graphical language for requirements develop-
ment,

b) the software tools and human interface features required to support prototype
development,

c) the role of component reusability in prototyping.

While Proto has not yet received extensive in-field use, so its prototyping role has not
yet been fully evaluated, some conclusions from initial experience can be drawn in
each of these three objective areas.

Effectiveness of VHLL for Requirements Expression

The choice of an effective system specification language is an area of continued
research, and there are several difficult criteria to be met by such a language:

- 17 -

a) precise semantics to enable a direct prototype derivation;

b) a simple syntax, possibly graphical in part, so the proposed system can be
described to prospective users and implementers, and possibly to improve the pro-
ductivity of system specifiers; and

c) abstraction mechanisms to prevent the need for detailed program design decisions.

Our experience with Proto indicates that an executable graphical data flow-like
language with hierarchical decomposition capabilities is a good starting point for a
functional specification language. When defining top-level system specifications users
find it very natural to talk in terms of functional components and interconnections
(information flows) amongst the components. The ability to execute the specification
to determine how well the prototype meets the functional requirements is highly desir-
able.

Proto has proven to be quite adequate for the test cases in which it has been used.
The language provides a good communications medium between analysts and users of
systems. Additionally, it properly focuses the analyst on abstract datatypes and func-
tions early in the specification process, and discourages users from jumping into design
level issues early in the process.

While the Proto language is very good for defining high-level system functionality,
after decomposing a system down to the level where a specific algorithm is to be per-
formed on a specific processor, Proto is not terribly helpful if the desired algorithm is
not contained in the reusable library. This however is not a condemnation of Proto,
rather it tells us that the capabilities of the reusable library need to be expanded sub-
stantially (e.g., it should contain user interface generators, mathematical programming
languages, models for communications channels, etc.).

The Proto system has precise semantics and a very simple syntax. This has proven to
have both advantages and disadvantages. On the plus side, users can learn to use the
language quickly and do not have to worry about the execution order of the com-
ponents in a diagram - namely, the scheduling is completely automatic. This feature
helps accomplish the goal of not requiring the. user to make detailed design decisions
while implementing a functional prototype.

On the negative side, Proto uses a specific scheduling algorithm, and there are times
when this algorithm does not execute complex diagrams in the order that the user
might consider intuitive. If the user does not like the order in which the scheduler
executes a diagram, the only way the user can affect the execution order is by chang-
ing the topology of the diagram - i.e., there are no controls provided to modify the
default scheduling algorithm.

One of the key shortcomings of the Proto language is that it is currently single-
threaded. Tc model complex real-time systems, the language should be modified to
allow multiple processing paths to be active simultaneously. Providing a multi-
threaded execution algorithm is also key to providing performance analysis capabilities

-18 -

for the system.

Features that qllow the user to directly control the execution order and multi-threaded
execution capabilities are being planned.

Support Environment Including Human Interface

We believe that the overall approach taken in building Proto was a correct one. In
particular, the object-oriented interface supported by an object manager works quite
well. With this interface, the user points at the object of interest and sees a menu of
options that are meaningful to the selected object in the current context (e.g., Editor
versus Interpreter). Additionally, the approach of separating graphic displays from
software tools that operate on the underlying information has worked quite well. With
this approach the user sees a graph representing a prototype system on the screen. The
user executes the desired tool to operate on the prototype (e.g., Editor), and the Editor
"attaches" itself to the existing display. Edit operations change information in the
objects and the object displays are automatically updated through methods that belong
to the individual objects. The Editor itself does not "own" the display. When the user
switches to another tool (e.g., the Interpreter), the display on the screen does not
change.

The Editor tool has proven adequate to build Proto diagrams. It understands the syn-
tax of a diagram and supports the user by not allowing meaningless diagrams to be
created. The Editor provides a number of advanced editing features to simplify the
task of the user.

While the Editor is adequate, a number of improvements should be made to make it
more user-friendly. Some of the more desirable features not yet implemented include
a flexible cut and paste facility, the ability to split and merge multi-level graphs, and
user definable icons. Note, the cut and paste required is more complicated than a sim-
ple "graphical" cut and paste since the objects being manipulated have an underlying
semantics that must be accounted for during the operation.

The Proto Interpreter has significant limitations (e.g., the single threaded operation and
fixed scheduling algorithm), but within these limitations it functions very nicely. The
ability to watch the functional prototype run (e.g., the bubble(s) currently executing are
highlighted), the ability to set graphical breakpoints, and the ability to instrument
diagrams (i.e., display the values of selected data items along the arcs over which the
data flows) have proven to be of great assistance in both debugging and evaluating the
functionality of prototypes.

The existing implementation of the Proto Browser provides very basic capabilities for
viewing and and modifying objects in the reusable library. It is coupled with the other
tools in the sense that the user can point at an object and ask to browse it; however,
the Browser creates its own viewing ,,ioJow rather than operating directly on the
diagram being displayed. While the current capability is adequate f,-,r the prototype, a

- 19-

more integrated graphical browser should be developed.

Role of Reuse

The Proto system depends heavily on its library of reusable objects - in fact all data-
types, all executable diagrams, and all the components from which diagrams are com-
posed are elements from the reusable library.

The existing library contains both domain independent objects (e.g., data manipulation
functions and user interface definition tools) and domain dependent functions (e.g.,
objects that were developed specifically for the individual examples that were con-
structed).

Experience has shown that a user can build a prototype quickly if the reusable library
contains most of the functions required for that particular example. To date the test
examples used have been from different domains, and hence most of the reusability
has been through the use of domain independent components. The domain dependent
components have been provided through a combination of modules written in Proto's
high level Script language and modules written in C.

Our conclusion from using Proto is that the reusable library approach is completely
viable; however, a great deal of work remains to be done. This work should address
reusability from different directions:

Domain specific library
A specific domain should be selected (e.g., C31) and a broad range of reusable
components for that domain should be created. After such a library is in place it
will be possible to evaluate the effectiveness of reuse by determining how many
of the underlying components have to be developed from scratch when a new sys-
tem from within the selected domain is to be prototyped.

Tools to create/modify components
A suite of tools should be developed that simplifies the task of creating new reus-
able components and tailoring existing components to solve new but similar prob-
lems.

Enhanced browsing
As the library of reusable components grows, it will be important to have better
tools for locating and viewing components that are candidates to use for a new
problem.

Coupling to external tools
Various external tools can be viewed as reusable components that the user can
"insert" into prototypes. For example, if the proper interface software is
developed, RPS can be viewed as a tool for creating reusable components intended
for modeling user interfaces, situation displays, etc. Other external tools such as
graphical mathematical programming languages and graphical user interface gen-
eration tools should also be integrated together with Proto to support the develop-
ment of reusable components.

- 20 -

5.3 Database Manager for RET

Based on the Database Management study and the results of the Proto development
effort, our conclusion is that an Object Manager should be used to manage all require-
ments engineering information in the RET. This model will provide a natural way to
define the artifacts for representing the information required by the requirements
engineering process and will provide the optimal way for managing the complex rela-
tionships among these artifacts. Other models (e.g., the relational, hierarchical or net-
work models) could be used but they would suffer both in terms of performance and
ease of use as compared to the object model.

BIBLIOGRAPHY

[1] Rzepka, W., Ohno, Y., "Requirement Engineering Environments: Software Tools
for Modeling User Needs", IEEE Computer, April 1985.

[2] International Software Systems, Inc., "RADC System/Software Requirements
Engineering Testbed Research and Development Program", RADC-TR-88-75,
Griffiss AFB,, NY, June 1988.

[3] Stephens, M., Whitehead, K., "The Analyst - An Expert Systems Approach to
Requirements Analysis", Proceedings 8th Int'l Conference on Software Engineer-
ing, London UK, August 1985.

[4] Konrad, M., Welch, T., "VHLL System Prototyping Tool User Manual", Air Force
Contract F30602-85-C-0129, Griffiss AFB, NY, June 1987.

[5] Rzepka, W., Daley, P., "A Prototyping Tool to Assist in Requirements Engineer-
ing", Proceedings 19th Hawaii Int'l Conference on System Sciences, Honolulu, HI,
January 1986.

f6] Konrad, M., Hartman, D., "Functional Description for Proto", Air Force Contract
F30602-85-C-0129, Griffiss AFB, NY, January 1988.

[71 Welch, T., Konrad, M., "Database Issues in Software Requirements Development",
IEEE Database Engineering, March 1987.

[8] Welch, T., "A Data Management Facility for Requirements Engineering Testbed
(RET)", Air Force Contract F30602-85-C-0129, Griffiss AFB, NY, Dccember
1988.

[9] Konrad, M., Welch, T., "VHLL System Prototyping Tool - User Manual", Air
Force Contract F30602-85-C-0129, Griffiss AFB, NY, September 1988.

[1O]Hartman, D., Clendening, G., Leon, J., "Proto System/Subsystem Specification",
Air Force Contract F30602-85-C-0129, Griffiss AFB, NY, August 1988.

[ll] Hartman, D., Clendening, G., Leon, J., "Proto Program Specification", Air Force
Contract F30602-85-C-0129, Griffiss AFB, NY, September 1988.

-21-

APPENDIX A. THE REQUIREMENTS R&D PLAN EFFORT

A.1 Panel Members

Members of the panel that defined the long-term RET R&D program were:

Robert Balzer - Information Sci. Inst., Marina del Rey, CA
Michael Konrad - International Software Systems, Austin, TX

C.V. Ramamoorthy - University of California at Berkeley, CA
Winston Royce - Lockheed Missiles & Space, Austin, TX
William Rzepka - Rome Air Development Center, Rome, NY
Steve Sherman - Lockheed Missiles & Space, Austin, TX
Leon Stucki - Future Tech., Auburn, WA
Terry Welch - International Software Systems, Austin, TX
Raymond Yeh - International Software Systems, Austin, TX

Rzepka was panel sponsor. Welch was panel chairperson.
Konrad was panel report editor.

Pei Hsia of the University of Texas at Arlington, Texas contributed to
the panel's efforts.

A.2 The Requirements Engineering Process Model

In an effort to come to a common understanding of the requirements
engineering process, especially terminology, and to partially capture
that understanding, the panel created a model of the process. This
section presents that model.

Report [2] contains much more discussion and further details on the
process model.

The model is portrayed in figure A-I. The figure shows information
depicted as boxes; and activities depicted as circles, ovals, and
rounded-corner boxes.

The model indicates the dependencies and sequencing between activities,
but is not meant to favor a particular methodology.

Information TyDes

The model identifies three major types of information: goals,
requirements, and solution architectures.

G are expressions of objectives and needs, generally mission-
related, and not necessarily feasible or consistent with each other.
Mission users are the primary source.

-22-

Requirements are a consistent subset of the goals which can be feasibly
realized within the available resources (especially time, money, and
expertise).

A Solution architevture is a model of the target system as a composition
ot parts that satisfy the requirements. The more common term is
sp-e fiLca-tiQ, but the panel preferred solution architecture, as
specification has been used to mean different things.

A Walk-through

We take a top-down walk through the requirements engineering process
model, identifying the objects and activities depicted in the figure.
For the walk-through, we assume a requirements engineer is required to
produce a set of requirements for a system called the "target system".

The target system must support the different roles of its users and
administrators. Thus there will be different expectations, or
"viewpoints" of what the system should do, of how well it should be
done, and within what cost. In the model these undocumented
expectations of target system functions, performance, and cost are
represented by Wish Lists. There is one wish list per role or
viewpoint.

The requirements engineer is limited in the time he can expend in the
creation of target system requirements. Thus he needs to prioritize his
objectives. These limitaticns and objectives should both be documente.
In the model they are represented by Jngirlje ng Context Descriptions.

Through interviews with target system user/administrators and through
references to documentation of similar, existing systems and their
environments, the requirements engineer collects and organizes
information on the operational context of the target system. The
resulting information forms a Domain Mod.L of the environment of the
target system, providing the terminology and context through which
wishes can then be expressed, forming Goals. Goals represent the

initial attempt at documenting a system's desired attainments. For each
viewpoint, there will be one set of coals, and they should be consistent
and complete with that viewpoint.

Goals are often inconsistent across viewcoints or clearly infeasible.
Such difficulties must be resolved by the requirements engineer through
further user interviews. The revised goals are then merged into a
preliminary set cf Requirements for the target system.

Through his interviews with users, the requirements engineer identifies
and dcuments _ mnr that illustrate typical target system behavior

and/or desired responses to stressful input. Scenario construction and
analysis may aid stating the nonfunctional requircmcr%, in particular,
performance and reliability.

During the creation of goals and requirevets, trheir ccns':¢nc, and
completeness is checked. This is called S¢1 iJ_!cnlyiz in the process

-23

model. To determine requirements coverage, the requirements engineer
might perform a walk-through, analyzing the dataflows and/or
stimuli/responses through the various viewpoints. This is called
DynamIc Analysis in the process model.

At this point, the requirements engineer might construct a ISqLtiQn

Architecture to gain better insight into: target system interfaces,

functions, performance and reliability, and implied development cost and
risk.

The requirements engineer creates a solution architecture by specifying
how the target system is composed of parts (e.g. objects, functions) and
how those parts use resources (e.g. people, software, hardware). To aid
specification of resources, the requirements.engineer can make reference
to existing resource models.

From the solution architecture, the requirements engineer can specify a
prototype. He executes the prototype against canned or user-controlled
scenarios, eliciting user comments on what should be changed. All of
these activities are covered by the Rapid Prototyping bubble in the
process model.

Also, the requirements engineer can do Analysis directly on the solution
architecture. By combining both rapid prototyping and analysis
activities and iterating, the requirements engineer can do sensitivity
analyses.

As a result of the insights gained through analysis and rapid
prototyping, the requirements engineer determines what revisions should
be made and makes them. This activity is called Requirements Evaluation
& Reformulation in the process model.

There may be several iterations of prototype, analyze, evaluate and
reformulate. The resulting requirements and solution architecture is
called the Final Requirements and Partial S luion Architecture in the
process model.

A.3 The RET R&D Program

Oblectives

Below we summarize, the RET R&D program objectives:

* The R&D program should provide tools and methods that work
together in the ways illustrated by the 1990 and 1995
scenarios (The 1990 and 1995 scenarios are not described in
this report but appear in [2].)

* The R&D program should provide tools and methods to support
process model activities.

-24-

The R&D program should help fulfill these RADC goals for the
RET: (1) The RET should support evaluation of the
effectiveness of tools and methods. (2) The RET should make
a full range of requirements engineering capabilities
accessible to Air Force mission users and acquisition
engineers. (3) The RET should host the currently-contracted
tools, (Analyst, Proto, and Rapid Prototyping System) and by
1990, they should be integrated.

* Long-range architecture for the RET - The R&D program should
realize an RET architecture featuring: (1) a direct
manipulation-style user interface to all objects, (2) a
database serving as the common repository for al I
requirements related information, and (3) a formal language
for expression of goals, requirements, and solution
arch itectures.

In the long term, all RET tools and methods should be
structured to fit this architecture.

References are made to these objectives in the sections that follow.
Section A.3.1 summarizes the panel's strategy for obtaining an
integrated RET. Section A.3.2 discusses an R&D program consisting of
two tracks: (1) an Evolutionary Track for developing tools and methods
that In the near term provide the best payoff in better requirements;
and (2) a Formal Language Track for exploring the higher risk/payoff
implications of a formal requirements language.

A.3.1 Near-term Integration of RET

To address RADC's objective of integrating the currently-contracted
tools, the panel recommends that integration be achieved by having the
tools work offa common database and be accessed through a common user
interface. This level of integration means that: (1) tools can share
data, and (2) the RET user is given uniform access to tools and their
data and is free to invoke tool functions in an order natural to his/her
application.

This approach will produce an early version of the long-range RET
arch itecture.

An integrated RET will also help in the evaluation to tools; for
example, by providing the basis for a broader range of control
experiments.

To significantly reduce the amount of effort required to achieve
integration, the panel recommends a near-term strategy of standards and
cooperation between the RADC tool contractors. The integration strategy
is further discussed in [2].

-25-

To provide RET users some of the benefits of integration in the very
near term, the panel recommends a loose coupling of the currently-
contracted tools. The loose coupling plan is also discussed in [2].

A.3.2 Requirements Engineering Testbed (RET) Research and Development Program

Two-Track Program

To meet the objectives stated at the beginning of section A.3, the panel
identified two themes on which RET R&D program efforts should focus: (1)
providing near-term support for these activities: prototyping,
requirements analysis, and evaluation of tools; and (2) a formal
treatment of requirements. The R&D program consists of two tracks to
deal with these two themes. Figure A.3.2-I depicts the R&D program road
map the panel defined to realize these themes. Below, we expand on
these themes and their associated activities and then discuss the
figure.

Theme of the Evolutionary Track

Both the 1990 scenario and the process model characterization
demonstrate the importance of prototyping and the role of scenarios in
driving prototypes. Prototyping gives a mission user "visibility" into
specifications of system and software requirements by helping the
mission user determine whether his/her needs are being addressed. Thus
the panel recommends that the "creation of prototypes and scenarios, and
analysis of results" activity be an early focus of the RET R&D program.

Some of the A.3 objectives imply the need for tools and methods that
address the non-solution-architecture phases of requirements
engineering; specifically, goals and requirements synthesis and
analysis. Such tools and methods would help mission users state their
needs and decisions at the mission level. Both scenarios demonstrate
the need for such capabilities. Such a need must be satisfied in the
near term. Thus, the panel recommends that the "analysis on
requirements" activity be another early focus of the RET R&D program.

Evaluating the effectiveness of RET tools and methods requires the
capability to track their use and collect results. An integrated RET
would help control independent parameters (e.g. style of presentation,
format of input data), a prerequisite for parallel experiments. Thus
the panel recommends that the "measurement of tools in an integrated
RET" activity also be an early focus of the RET R&D program.

To successfully provide near-term support for the three activities above
requires a low risk and early payoff strategy. In the long term, the
resulting RET capabilities would be enhanced/refined. The panel
organized an "Evolutionary Track" of R&D efforts to do this. The
Evolutionary track would provide the capabilities illustrated in the

-26-

1990 scenario and support most process model activities. The
Evolutionary Track is described in detail in [2].

The Theme of the Formal Language Track

The panel recognized early on that representing requirements in a formal
language was a high-payoff approach, but such an approach would fail to
provide near-term solutions to the R&D program objectives.
Nevertheless, such an approach would address these objectives not being
addressed In the other track: (1) help automate requirements
traceability and assessment of requirements coverage, and (2) provide a
language for representing requirements, solution architecture. The
panel thus defined a "Formal Language Track" whose focus would be to
provide such a formal language.

The Formal Language Track would also provide the capabilities
illustrated in the 1995 scenario and support most process model
activities.

The Figure

Figure A.3.2-1 depicts 1990 and 1995 goals of the two themes: creation
of prototypes and scenarios and analysis of results ("Prototyping"),
analysis on requirements ("Analysis"), measurement of tools in an
integrated RET ("Tool Evaluation"), and formal language. Their
dependencies with each other and with the currently-contracted tools are
indicated by the arcs.

Analyst tool capabilities are the 'basis for the 1990 Analysis
capabilities for structuring requirements and the domain model. Domain
models provide necessary information for building scenarios and
simulations, thus the vertical dependency with 1990 Prototyping goals.
1990 Prototyping goals are also dependent on the prototyping and
scenario generation capabilities provided respectively by the Proto and
Rapid Prototyping System tools.

1995 Prototyping goals extend 1990 Prototyping capabilities by providing
capabilities for sensitivity analysis on requirements. 1995 Analysis
goals extend 1990 Analysis capabilities by providing capabilities for
dynamic analysis and quality critiquing. Various interactions are
possible between 1995 analysis tools for these two activities, hence the
double-headed vertical arrow.

The 1990 Tool Evaluation standards will be influenced by the standards
adopted by developers of the currently-contracted tools. These 1990
standards will in turn guide all subsequent RET tool development. The
1995 Tool Evaluation goal is to integrate these new Analysis,
Prototyping, and Formal Language capabilities into the instrumented RET
to facilitate their evaluation.

The 1990 Formal Language goals are independent of 1990 Analysis and
Prototyping efforts and the currently-contracted tools. The 1995 Formal

-27-

Language goals Include incorporating abstraction mechanisms into the
language and interpreting classes of scenarios. These capabilities must
also be integrated into the RET.

From the perspective of milestones, the 1995 RET will be a mature

experimental facility, hosting matured analysis, prototyping, formal
language, and evaluation capabilities. The 1990 RET will be a prototype
of the 1995 RET, still integrated and instrumented for evaluation, but
featuring only a few mature tools, in particular, the currently-
contracted tools.

-28-

• 1,2,3 egneigeecs

1 .2,3 effort constraints

~~~~aII~~~~~~~~ nubrdacteernee f ah stared ox tiveessbbe

. LS ISTS , c ment Mission/aroleL efn specific.

2.~~1.. AppictinsominMoel

3 User co v across roles

. ar pe rformance/re liability
• 1exit FINAL

I -IREQUIREMENTS J estbeld l Requirements
and partial

4,5 solultion

i architecture

5. rire Models P s n siaat Analysis'

Figure A-r Requirements Engineering Process Model.



-29-

Tool Formal

LnPrototyping Analysis Evaluation Language

C/) Cf
LU LU

C/) 0

0 D

-J < 0
D z ZLU 0Z

zv 0 <H )
UJH COWCQ

o < zo
0n w 0 Z

0)-C :DW 0~

z L co

a- -C ) J 0

< ~ < co 0:

<L CE
06

00 z

0U 0C/) C
a) z LU

(0 z O
crC 0 <H

0)Z OL LU z :Z

wL 0  CE 0 C/ 0
HZ X U :

Z 0 0C) cn MFr 0U-
U) UJ 0 - c

Z Dc 0c



- 30 -

APPENDIX B: Executive Summary from Database Study

The following is the executive summary taken from reference [91, "A Data Manage-
ment Facility for RET".

The DBMS for RET is called upon to provide a path for sharing data amongst three
existing tools and potential future software engineering tools. A line of argument is
developed which shows that specification descriptions should be shared between tools
in a form where the relationships between operators and data structures are explicit, as
opposed to the relatively implicit relationships contained in textual descriptions (e.g.,
conventional programming languages). This leads to a database representation of enti-
ties (objects) and their relationships to each other. Objects can be composed into
dynamic structures (e.g., a hierarchy), so a conventional relational DBMS proves to be
awkward and inefficient for general object storage. The object model effectively sup-
ports the extraction of tool specific data as "views" of the stored data, so that various
tools can share data without having to conform to the same data structure.

An Object Manager (OM) differs from a relational DBMS principally in that it pro-
vides an identifier for each object instance and permits a wider variety of attribute
types. It shares some of the implementation problems of any DBMS in choice of logi-
cal and physical tool interfaces.

The proposed object manager will provide object definition and manipulation capabili-
ties along with object storage. The Object Manager has the potential for better perfor-
mance than a relational DBMS because the related objects are more likely to be
clustered and the relationships between the objects are used more effectively.

We recommend that the OM be implemented in a separate process, in the Unix sense
of process, for protection of the data base. A tool or other application program would
call procedures to insert and retrieve objects, and those procedures would then com-
municate with corresponding procedures in the OM process. Data from the OM pro-
cess is loaded into an "in-memory" object model associated with an individual tool.
The in-memory representation is organized for more efficient access to object informa-
tion and for more rapid movement among related objects. This strategy reflects trade-
off examinations of ease of tool development and modification, execution speed, and
flexibility of data sharing.



-31-

APPENDIX C: Proto Capabilities and Concepts

Rapid prototyping is pursued as a means to develop and validate functional specifications
prior to extensive code development in a large software system. To achieve a functional
prototype execution with moderate development effort three capabilities are desirable: 1) a
functionality specification language, which minimizes the design decisions which must be
provided by the prototype developer when describing prototype functionality; 2) a library
of reusable software modules to expedite system specification, and a database system to aid
in module retrieval and analysis; and 3) a set of interactive tools, including a system
interpreter with debugging features, which aid in the construction and execution of
prototyping experiments.

PROTO is a rapid prototyping system with these capabilities, providing a graphical
prototyping language and its support tools. It employs a strategy of component reuse
which incorporates object-oriented modules. It provides interactive tools which help users
cope with complex system design information by means of graphical presentations.

In PROTO, one creates a functional prototype, which is used to validate the specification of
system responses, to determine if the functionality is usable in the target context. This style
of prototyping can also be used to verify design decisions, such as algorithm selection,
interfaces, etc. This is distinct from behavioral prototyping, which checks the human
factors aspects of man-machine interfaces, and performance prototyping which provides
response times for a design that implements the target specifications. Functional
prototyping is used to stabilize software requirements via demonstration of system
capabilities to potential end-users.

The prototyping language uses a dataflow style of presentation to express precedence
relationships between operations. It supports a hierarchical and object-oriented structuring.
It supports abstract datatype concepts mixed with conventional data typing, but shields the
user from data space management concerns.

The prototyping support environment is centered around an object-oriented data
management system which is closely coupled to a workstation display. This structure is
effective for storing and viewing hierarchical compositions of program graphs, data type
definitions, and other design data. The object management system provides better access
performance and simplicity of query expression than conventional data management
systems do for complex design data.

We illustrate PROTO capabilities via a sequence of screen images in the following pages.

This work was supported by a Rome Air Development Center contract on rapid prototyping
(No. F30602-85-C-0129).



-32 -

EXAMPLE PROTOTYPE

The following five screen Images illustrate a particular example, Target Reprnrt
Correlation. This Is described here as a vehicle to demonstrate some capabIl ities
of the Proto language and tools.

The example shows a series of target reports received from a sensor. For example,
It might be satellite observations of tanks. Each target report specifies the
position, direction, speed, and size characteristics of a target formation, and
specifies the time the report was made. In what follows, each reported target
formation is cal led a "group", and the group which Is the subject of the current
target report is called "the target".

The software system Is to correlate successive reports to determine which reports
determine a new position of a previously-reported group or when a new group has
entered the view area. This correlation is Interactive, with a human analyst
making final correlation decisions based on Information presented on an Analyst
Workstation.

The objective of the prototyping effort would be to determine what information is
needed by the analyst, and what operations he/she needs for effect;v, decision
making. The system also Includes an automated correlation algorithm to aid the
analyst, and prototyping would serve to determine the benefit of this help.



-33-

'I x

Ln

C)

00 C

0.

Q>
o0~0

LA
0-

0 +- i

x 04L-
0) L

L4-

* --

4-
to +.

00

4- (Dc

) m 0

+-C

) 0--

LUL

_ 4

0-)



-34-

L- c .

>- 4

L Co 0 ~

:) aIA C.
S U 0 0

C0

4OL +- E, '
U~ ~ 4 0

t.. W. 4 - u
40 > 

0
C

(0 C.. L- C0
3 0 0

10 U CL 0C
0 0

4- - o.

oo m

f. E ej

4- 4

t:~ UD L- - L

ca .C : E 0 C-
CL

0 I0

C 0 . L-

4- 0

a0 L ) 0 L C
C) ' L . 0 4- U o
u 0 uC4 W

L - 04 
LC -0 c 0

IA 0 (V-) -

4- . 0

4- c 4,U- 0

U) U* UD 0
u

CL CLI

LD +0~ - k0 V L-
20 'n C o >0 L

- CD ~ OL

C U IA I U
0 0~U 0 (0C

u ~I

0 U c



-35-

440

L-

10.1

LE >

UL 0~ 0

C-

to >

.2 0

.0 0-

C 0

0

In

00
4- E

M C
0

4-

0 L >

00

00

L 0



-36-

0 0

oc

cc E

- t SIn

X- U

tn 2

(1 4- c
x0 >. 6

Ln 0 .

0

(C 3

0 0C

0 cL

C- 0
o. 0-c

- Z. to
0- L.

0- 0~

2--

U0 0
LU 0

0C

0~0



-37-

II.

-- 
4

T t

L to

0.> 4. c ~.2~

4-

L4 0 0 E

.0 4

0 L

44 c 4- m

W 4'

L. L (f D

44

.- 
L ' 0 0
C) I -

C.E CL.

w 
L A-UCJ ~~ 71I

Igi IZ ~ Lo '1-- 7I



-38-

PROTO SPECIFICATION LANGUAGE

The previous screen images Illustrate the use of the PROTO language for functional
specification. The key features of this language are reviewed here.

A Dataflow Dlagram Language. The syntax Is a refined dataf low diagram syntax,
because as a visual form, dataflow diagrams appear to provide ease of
understanding for non-programmers, and if used with care, provide a precise
description of system functionality. They also serve as suitable Inputs to the
design process.

ActJnics. Proto has a adopted a message-passing model for dataf low
diagrams, whereby each operation sends Its outputs as messages which activate
subsequent operations. The message-passing paradigm shIelds the system specifier
from implementation Issues of memory space management and operation sequencing.
This simplifies the specification of a system relative to doing It In a high-level
language such as Pascal. The result is that the prototype may not execute of
highest speed, but prototype execution performance is assumed not to be a primary
objective so long as It Is not unacceptably slow.

Proto specifications are essentially interconnections of components whose
functionality can be defined three ways: 1) as Proto dataflow diagrams, 2)
selected from a library of reusable components, or 3) defined by HLL source code,
including a special ized language unique to Proto called "script".



-39-

SYSTEM ENACTMENT

System enactment Is achieved by direct Interpretative execution of the dataf low
diagrams. This enactment produces the specified system outputs for each set of
selected Inputs. Thus, multiple "input scenarios" can be applied and the
specification reviewed In terms of the results produced. This enables one to
exercise a prototype to see how it reacts to particular stressful Inputs and to
explore Implications of "what if" questions.

Interpretation In PROTO produces a graphical animation of the processing and Is
useful as a debugging aid. Standard debugging support Is also provided, such as
breakpoints, single-stepping, etc. Interpretation can resume Immediately after
the re-editIng of a specificati[on, allowing timely exploration of user
suggest ions.

The next six screens show snapshots of an interpretation.



-40-

- t 4

4c

I-I~7 a- -;0e

2X a 0 c

> 0C
34- 0)

CL

0..

E L

C- ; 9 ,- o

to c

L~0

0~ a

r--

LC

a --

_CL

U! I- w

40 r- > -C0

4~~ -U0 0.
X.3 - 4-

-r .0 ri (

- ;L3

c Q ) 0)C
L.L

+- 0

oo co u u

0 c



-41-

CC

0 4-

A. CL 4L

>i 0

C CC 00

0 -0
La. 0 L. 06

L.~L wO

- -C cm)
Lu 4- OL

x 0L .0 -

2100

3K ~0 0 a

04- -
0o C-4- X

0 0D 0 oM

> coV

(DW 0 -

CD CL L-I~ IU

CC

In -



-42-

0

C 0 0 OD.O
0 D 00 COL

LLJ CD CD 00 V.0 0~L

ce (A C: 4=4 00 tA *(Z CDcm V, CD" 0 IN
z C W 

4 . . - hU

cn z W.

m~~0 cw 0 DC



-43-

x
uJ

5-4-

B-

U-4-40

goo
u -c

LU 0

J cn
LuL

- U

0)
C 4

0
00

0 4
L

4-
0c

C

C.

0

V)

- C.

00

4- r
C)C

2 .

UU LL
L en.



-44-

a.z

cC

+->

u1 0

0 0

-- uj
to

'U
LUU

i 0OL
06

C ~0
re 0 o 0

C: E
0o 0

L C

.. ~~~ .........
. . . . . . . . .C

()0

-C
oco 00

.2 C

go

__ 0 0

-WgS:<xE4- C



-45-

EDITING

The creation and modification of specifications must be convenient and fast for
prototyping to be rapid. Part of the challenge for an editor is meaningful
presentation of potentially very complex system speciicaTions in a form tl..af it
easily edited.

Presentation of specifications requires extracting views from a multi-level
hierarchical specification, In which each level can be described in several
dimensions: diagrams, textual specifications, interface specifications, code,
etc. The Interactive graphical facilities of a workstation provide effective
means to let the user navigate and form a view of a specification. PROTO exploits
workstation capabilities by a flexible windowing system which allows the user to
manage the layout of Information on the screen.

Editing of Proto graphs Is facilitated by an "object-oriented" style of
Interaction, whereby each icon on the workstation screen corresponds to a database
object whose class defines the type of editing available for that object, and
thereby defines the content of the "pop-up" menu which guides user actions for
that object. Modifications are made directly to the database object, for
immediate access by other tools.



-46-

U,;

"C4

4c

1 '"

~ W U

0 o

X LO

w

-00' -
1--

0 a)

0

C,, O= 0

U, -

* 00 0 r;

-~0 =.VE. 0.

0 V,

V I
*' 00

0  0 0 L.

Co cr c 0 w

0 L.

_ _ _ _ _ _ _ _~~ m _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



-47-

GI

LL

op L.

I C

0 to

C *->-

00 o

C (fl

0 Q LV
C<-

Cw 0

(0 0

to-. C

m6 V 0 u

0.
0~~ 0 -

r- - (0,
m &

0 t
*..CL 0 +-

*Ca 03 a)

00E

cn~ PM 0

C- 0 >

u 0 ~

CD wfl LJU C. 0

0~0) 0J tu



-48-

CLL
-a4

. ~ ~ ~ a .

LUk

l' 0U

0 Z M 4-

-0

-U -. 4 I

0 0

- I xma
00.-

-0

4-

.1 0 a. to

U LL
AC

CL o. CA. c

M --

-o4 0 q0



-49-

CC

w~C

,0

2 l 0 0~

u.C 0)

z

.- CL

0

- I 2.
LU

CLC

Z' A

0o
00

I.--



-50-

C 2 0Q

- co 4

to 4- 4

0

> x 0

-C
CC (a

~- 0

'V(

(U n -u

CO C--

U, 0

CD 0 0.-.

0- 0

3 - K
a C 9 Q

c Ln 3t 0Z
-o +- )

0 U U

00 OM It c
-- C 0 c

u V) .C 4-
3r 0 4 0kn

0-QU
VO J



jcjc

0,:

100

xC

ILJ CD4-
4- W X

L 0

uLJ L

w vu
0-

C L
zi Z 0 c 0

uw 00
CL 0

>4- -o

CL +. 
0

Lq

4- to

Inn

0 0*

01

-- L.) co



-52-

REUSE

Prototyplng and reuse work well together. The availability of an application-
specific library of reusable modules simplifies the construction of prototypes In
that application area, and reduces the level of computing skills needed by the
prototype specifier. Also, the normal Impediments to reuse, I.e. performance and
design robustness, are not critical parameters In prototyping. Prototyping
encourages reuse because the system desIgner can observe the operation of a
reusable modules In the target system context, and thereby gain better insight
Into the module's functions.

To facilltate reuse, a prototyplng system needs database facilities which help in
selection of candidate modules out of a reusable library. These facilities
support classification of modules, searching for selected module properties,
relation of modules to their datatypes, etc. In addition, the specification
language and editing facilities should make It easy to insert (bind) a module Into
a specification. The following screens show the typical structure of a reusable
module and Its incorporation Into a Proto specification.



-53-

0

0c 0). 0

CO) 10

0 U 0

0E Ouu

* W n 0) CL

-c 4*- - 0
4) 0 lo4-

L~ cocO .

0CL go 0).4
C C to0

- L. ;.!
'a Ovo.I

* ox
v 

0
;.0 6 CA - L

CL - co -

S Co
S Q). ,- Lto+

I- +

* 000090 L0E

"n +, o >0 -

W 0-
0 t

.I-V 0.0

atCl/I m

L' - CO "
-, +. CL .- -

2 ~. C 0
00

< 4)

- S --

~0 t ' oW

4-. '

,A 01 Z- I"-8= .t- .- .C

m -N5 -

CD -- CL



-54-

0 4

4~( 0 .4
-0 CL

H 4

o -

CL >C

VII- 0

L ~o0
'Un

o L
,I, C u

19~ 2. LL0

tU 0-
4, ,

6 *4
0~~ L- E C

L L
U.1 0 c:

0. >

L tt -

0 --

zI - A

CLL

0I
-oil



-55-

PROTO STRENGTHS

PROTO provides the ability to create system functionality specifications using
datafIow diagrams, wIth dependence on a library of reusable modules to make
prototype construction rapid. Direct enactment of those specifications via
interpretation yields a functional prototype, by which those specifications can be
reviewed against various Input scenarios.

PROTO provides tools for building and viewing complex system descriptions, both In
terms of hierarchical composition and in viewing multiple dimensions of
description. It Is a working prototype of a new architecture for software tools
systems, where the object-oriented user Interface Is tightly coupled to an object-
managed database. This permits multiple tools to share design data and screen
Images with consistent interpretations.


